14

OBJECTIVES

After studying this chapter, a
student should:

1. understand the solution of
classical equations of
motion;

2. understand the classical
wave equation and its
solutions and be able to
solve problems involving
classical wave
phenomena;

3. understand the way in
which quantization is
introduced in the old
quantum theory, and be
able to solve problems
related to that theory;

| 4. understand the relation of

| the Schrddinger equation
to the classical wave
equation and understand
the boundary conditions
imposed on its solutions;

5. understand and be able to
use the method of
separation of variables to
solve a class of differential
equations;

6. be able to solve problems
related to the Schrédinger
equation.

The Principles of Quantum
Mechanics. I. Classical Waves and
the Schrodinger Equation

PRINCIPAL FACTS AND IDEAS

1. Classical mechanics ascribes exact trajectories to particles.

2. The old quantum theory contained quantization as hypotheses but was based
on classical mechanics.

3. The “matter waves” of de Broglie led to quantum mechanics.

4. The Schrédinger equation describes the waves that correspond to states of
systems.

5. Quantum mechanics contains the concept of wave—particle duality: objects
can exhibit wavelike properties as well as particlelike properties.

6. The time-independent Schrodinger equation can be solved for some example
systems, and produces quantization as a natural part of the solution.

493



494 14 The Principles of Quantum Mechanics. |. Classical Waves and the Schrédinger Equation

Hooke's law is named for Robert
Hooke, 1635-1703, one of Newton'’s
contemporaries and rivals.

Stationary
object

Spring

Mass

-~
Equilibrium ————=@ —0
position of
mass

Figure 14.1. A System Represented
by a Harmonic Oscillator. This sys-
tem is a mass on a spring.

Classical Mechanics

Classical mechanics is based on the laws of motion discovered by Sir Isaac Newton,
and is also called Newtonian mechanics. Appendix D presents a brief survey of
classical mechanics, which is now known to be accurate only for objects of relatively
large mass and for relatively high energies.

The Classical Mechanical Analysis of the Harmonic Oscillator

The harmonic oscillator is a model system that represents a mass suspended from a
stationary object by a spring as shown in Figure 14.1. Let the vertical coordinate z of the
mass equal zero at its equilibrium position and be positive if the mass is above this
position and negative below it. The force on a mass suspended by a spring is described
for fairly small values of z by Hooke’s law:

F, = —kz (14.1-1)

where £ is called the force constant. The larger the force constant, the stiffer the spring.
The harmonic oscillator obeys Hooke’s law exactly for all values of the z coordinate.
The mass of the spring suspending the oscillator is assumed to be negligible. From
Newton’s second law, Eq. (D-1) of Appendix D, the force on an object equals its mass
times its acceleration. This gives the equation of motion of the harmonic oscillator:

d*z
—.'?z’:m;;; (14.1-2)

This differential equation is called linear because the variable z enters only to the first
power and is called second order because its highest-order derivative is the second
derivative.

The general solution of a differential equation is a family of functions that includes
nearly every solution of the equation. The general solution for Eq. (14.1-2) must
contain two arbitrary constants, since this is a property of linear differential equations of
second order. A general solution can be written as

(1) =Asin(\/gt) +Bcos(\/gt) (14.1-3)
m m

where 4 and B are arbitrary constants. The velocity can also be found from Eq.

(14.1-3):
vz(1)=d—3: EI:ACOS(‘/'—JEI)—BSin(ﬁI)] (14.1-4)
dt m m m

To make the general solution apply to a specific case, we apply initial conditions.
Since there are two arbitrary constants, we require two initial conditions. These
conditions can be that at time { = 0

2(0) = z,, v,(0)=0 (14.1-5)



14.1 Classical Mechanics

495

ANEVANEVA\
A BVARV N

(@)

(WAWA

Figure 14.2. The Behavior of a Harmo-
nic Oscillator. (a) The position as a
function of time according to classical
mechanics. (b) The velocity as a func-
tion of time according to classical
mechanics. This motion is called
uniform harmonic motion. The position
and velocity both vary sinusoidally.
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where z; is a constant initial displacement. Since sin(0) =0 and cos(0) = 1, then
v,(0) = 0 only if 4 = 0 and z(0) = z, only if B = z,. The solution that applies to the
initial conditions shown in Eq. (14.1-5) is

z(t) = zycos| 4/ —¢
m
v,(t) = —\/-E Zy 8in (\/é t)

Figure 14.2a shows the position as a function of time and Figure 14.2b shows the
velocity as a function of time. This motion is called uniform harmonic motion. It is a
periodic motion, repeating the same pattern over and over. The constant z; is the
largest magnitude that z attains and is called the maximum amplitude of the oscillation.
The length of time required for the oscillator to go from a certain position and
velocity to the next repetition of that position and velocity is called the period of the
oscillation and is denoted by t. It is the length of time required for the argument of the
sine function in Eq. (14.1-6) or the cosine function in Eq. (14.1-7) to change by 27

\/E
—1=2n
m
Tzzﬂﬁ
k

The frequency v of the oscillation is the reciprocal of the period, or the number of
oscillations per second:

(14.1-6)

(14.1-7)

(14.1-8)
or

(14.1-9)

1
b by (14.1-10)

V== —
T 2n\m

The frequency is larger if the force constant is larger and smaller if the mass is larger.

EXAMPLE 141

An object of mass 0.250kg is suspended from a spring with k = 5.55Nm™". Find the
period and the frequency.

Solution

| 0.250kg
T= (271') m:-l'= 1.33s

y =0.750s7! = 0.750Hz

: 1338
The unit of frequency is the reciprocal second, properly called the hertz (Hz).

EXAMPLE 14.2

A typical chemical bond is similar to a spring with a force constant near 500Nm™".
Estimate the frequency of oscillation of a hydrogen atom at one end of such a spring with
the other end held fixed.
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Figure 14.3. Mechanical Variables of a
Harmonic Oscillator. (a) The potential
energy. (b) The force on the oscillator.
The force is given as the negative deri-
vative of the potential energy.

. Solution

1 [ 500Nm! i
o\ Temx 0y T o X100 Hz

This frequency is typical of vibrational frequencies of molecules.

The kinetic energy of a harmonic oscillator is a state function of the velocity. For our
initial conditions,

2
A =%mu2 :%m%zﬁl:sin(\/gt)j] =§zﬁsin2(\/ét) (14.1-11)

Equation (D-5) of Appendix D relates the potential energy ¥ and the corresponding
force:

dv”
=i 14.1-12
FZ dZ ( )
The potential energy of the harmonic oscillator is
1
"V(z):zkzz + constant (14.1-13)

An arbitrary constant can be added to a potential energy without any physical effect,
since it does not change the forces. We set the constant in Eq. (14.1-13) equal to zero so
that ¥70) = 0. Figure 14.3a shows the potential energy for the harmonic oscillator as a
function of z, and Figure 14.3b shows the force due to this potential energy. For our
initial conditions, the potential energy is given as a function of time by

“//zgzé cosz(\/gt) (14.1-14)

The total energy, £, is given by

E:;«+~//:%kz§[sin2(\/gr)+cos2(‘/g:)J z%—lczﬁ (14.1-15)

since sin®(x) + cos®(x) = 1 for all values of x. The total energy does not change during
the oscillation, corresponding to conservation of energy.

The kinetic energy becomes equal to zero at the extreme of an oscillation (the
turning point) as the object changes direction, so the total energy equals the potential
energy:

1
E:«f/(zt)=§kz;’- (14.1-16)

The displacement at the turning point is denoted by z,

2E

=, — 14.1-17

z T ( )
For our initial conditions, z, = z,.

The harmonic oscillator is used as a model for a vibrating diatomic molecule. Since

both nuclei move, the model oscillator consists of two movable masses connected by a
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Figure 14.4. A Second System Repre-
sented by a Harmonic Oscillator.
This system consists of two masses
connected by a spring.

spring, as depicted in Figure 14.4. As shown in Appendix D, it is necessary to replace
the mass in the harmonic oscillator formulas by the reduced mass yu:

mymy

= 14.1-18
T ( )

where m, and m, are the masses of the two nuclei. The frequency of oscillation of a
diatomic molecule is given by

= I 14.1-19
i ( )

Classical Waves

There are various wave phenomena that are adequately described by classical
mechanics. These include sound waves, light waves, waves on the surface of bodies
of water, and vibrations of the strings in musical instruments. A wave consists of an
oscillating displacement. In a water wave the displacement is the distance to a point on
the surface from the equilibrium position of this part of the surface. A region of positive
displacement is called a crest, and a region of negative displacement is called a trough.
A location where the displacement of a wave equals zero is called a node. Most waves
are periodic waves, with a number of crests and troughs having the same shape. The
distance from one crest to the next is called the wavelength A. The period of a wave is
the time for the first return of the oscillating object to an initial state. The frequency is
the reciprocal of the period, or the number of oscillations per unit time, and it is denoted
by v. A wave is inherently delocalized (cannot exist at a single point in space).

There are two principal types of waves. A traveling wave propagates (moves along)
like the waves on the surface of a body of water. A standing wave, such as the vibration
of a string in a musical instrument, does not propagate but has stationary nodes. Figure
14.5 represents some features of traveling and standing waves. It shows how the
traveling wave in Figure 14.5a moves to the right without changing shape, while the
standing wave in Figure 14.5b oscillates between stationary nodes.

One important property of waves is interference. When two waves come to the same
location, their displacements add. If two crests or two troughs coincide, a displacement
of larger magnitude results. This addition is called constructive interference. If a crest
of one wave and a trough of another wave coincide, they will partially or completely
cancel each other. This cancellation is called destructive interference. Constructive
and destructive interference are qualitatively depicted in Figure 14.6a, which shows the
sum of two waves of different wavelengths.

A property that arises from interference is diffraction. If a water wave encounters a
post, there will be a reflected wave that moves out in all directions with crests that are
circles or arcs of circles. The reflected waves from a row of equally spaced posts can
interfere to produce a diffracted wave with straight crests, which travels in a direction
different from that of the incident wave. Figure 14.6b illustrates diffraction by a set of
equally spaced scattering centers. The broken straight lines represent the crests of a
plane wave moving from left to right. The arcs represent the crests of diffracted waves
moving outward {rom the scattering centers. At a distance from the scattering centers
that is large compared to a wavelength, these crests combine to produce a diffracted
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A standling wave: t;:

Figure 14.5. Traveling and Standing Waves. (a) A traveling wave at times #; <1, < t; < I,.
The nodes of the traveling wave move along (from left to right in this diagram). (b} A standing wave
attimes #; < t, < t; < f;. The nodes of the standing wave remain at fixed positions.

plane wave. The wave nature of light was established experimentally when interference
and diffraction of light were observed.

Waves in a Flexible String

The flexible string is a model system that represents a real vibrating string. It is defined
to be uniform (all parts have the same mass per unit length, denoted by p); there is a
tension force of magnitude T pulling at each end of the string; the string is perfectly

Wave displacement

-— Sum of two waves

Scattering centers
Wave trough
Wave crest
K KWave front

(b)

Figure 14.6. (a) The superposition of two waves of different wavelengths. This figure
illustrates constructive and destructive interference at one time. (b) The diffraction of a wave by
a row of scattering centers. The direction of the diffracted wave depends on the wavelength.
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flexible; there is no friction; the string undergoes only small displacements, so that the
total length of the string remains nearly constant and the magnitude of the tension force
T is nearly constant; the equilibrium position of the string is a straight line segment on
the x axis, with its ends fixed on the x axis at x = 0 and x = L.

At some initial time the string is displaced into some position in the x—z plane and
released to vibrate freely in this plane. The state of the string is specified by giving the
displacement and velocity at each point of the string as a function of .

z=12z(x,1) (14.2-1)
oz
v, =v(x, t) = % (14.2-2)
The classical wave equation of the string is derived from Newton’s second law in
Appendix D. Equation (D-9) of Appendix D is
¥z pdz 1 &z
o TR o ar
where ¢ = T/p. We will show later that ¢ is equal to the speed of propagation of the
wave in the string.

(14.2-3)

Standing Waves in a Flexible String

Equation (14.2-3) is a partial differential equation whose solution is a function of x and
t. We begin by seeking a solution that represents a standing wave by separating the
variables.

1. The first step in the separation of variables is to assume a trial solution that is a
product of functions of one independent variable:

z(x, 1) = Y(x){(®) (14.2-4)

2. The second step of the method is to substitute the trial solution into the differential
equation and to perform whatever algebraic operations that result in an equation with
terms that are functions of only one independent variable. We substitute the trial
function of Eq. (14.2-4) into Eq. (14.2-3):

a1, d¥

% il 4.2-
‘ =2V bl

The derivatives are ordinary derivatives since { and i each depends on a single variable.
We divide Eq. (14.2-5) by y(:
1 d*y 1 d¥

—_— T 14.2‘6

IH & A0 0
Each term depends on only one independent variable, so the variables are separated.
3. The third step in the method is to set each side of the equation equal to a constant
since each side is a function of a different independent variable. This gives the two
equations:

R 5 constant = —«’
V(x) d? a

1 d%
mczc(t)ﬁ = —K? (14.2-8)

(14.2-7)
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The constant must be negative to give an oscillatory solution, We denote it by —k? so
that x will be a real quantity.
Multiplying Eq. (14.2-7) by ¢ and Eq. (14.2-8) by ¢*{ gives

2

% + K2P(x) = 0 (14.2-9)
2

% + 122 =0 (14.2-10)

These equations have the same form as Eq. (14.1-2). The general solutions are obtained
by transcribing the solution to that equation with appropriate changes in symbols:

Y(x) = B cos(kx) + D sin(kx) (14.2-11)

{(t) = F cos(ket) + G sin(xct) (14.2-12)

where B, D, F, and G are arbitrary constants. The product of these two functions is a
wave function that satisfies the wave equation, Eq. (14.2-3).

However, the solution does not yet apply to a string with fixed ends. It must obey the
boundary conditions that z vanishes at x = 0 and at x = L. The function i must vanish
at these points, since it contains all of the x dependence of z. The condition that
(0) = 0 requires that B = 0, since sin(0) =0 and cos(0) = 1. The sine function
vanishes if its argument is an integral multiple of 7, so that

KL = nn (14.2-13)
where 7 is an integer. We have the values of B and K, and can write
Y(x) = Dsin(n?x) (14.2-14)

Now that we have satisfied the boundary conditions, the constants D, F, and G are
chosen to match initial conditions. A classical equation of motion generally requires
two initial conditions, one related to the initial position and one related to the initial
velocity. We specify the first initial condition that the string is passing through its
equilibrium position (z = 0 for all x) at the time ¢ = . This requires that F' = 0, since
sin(0) = 0 and cos(0) = 1. The solution can now be written as

2(x, 1) = YO)() = DG sin (?) sin(%g)
—y sin(%) sin(i’fLi‘) (14.2-15)

We have replaced the product DG by a constant 4.

We now choose as the second initial condition that the maximum value that =
achieves is equal to z;. We call z, the maximum displacement or amplitude of the
wave. This condition determines the initial velocity of the string. The solution now
contains no unknown constants:

; ; 4

Z(x, t) =z, sm(ﬁjgi) sm(?E—C) (14.2-16)

The velocity of any point of the string is

dz nmeN |, /nmx nmct
v, = —é'; =2 (T) Sin (T) cos (—z'—) (142-17)
The velocity at 1 = 0 is
nme\ . /nmx

0.(0) = z, (T) sm(T) (14.2-18)
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The Fourier series is named for Jean
Baptiste Joseph Fourier, 1768—1830,
famous French mathematician and
physicist.

The function z(x, ¢) is a wave function that represents the motion of the flexible string
for all values of x and ¢.

Exercise 14.1
a. Show by substitution that Eq. (14.2-15) satisfies Eq. (14.2-3).
b. What is the effect on the wave function of replacing n by its negative?
*c, What is the relationship between the value of n and the number of nodes?

The relationship between L and the wavelength A for a standing wave is

_2L__2Tf
T n kK

ni.= 2L or A (14.2-19)

The period 7 of the motion is the time for the string to return to an initial state. It is the

time necessary for the argument of sin(nnct/L) to change by 27, so that
nmet 2L

2n=— or T= (14.2-20)
L ne
The frequency v is the number of oscillations per unit time or the reciprocal of the

period:

nc n |T
b = (14.2-21)
A different frequency results for each value of n. For a fixed value of n, the frequency
can be increased by increasing the tension force, by decreasing the length of the string,
or decreasing the mass per unit length of the string.

The wave function shown in Eq. (14.2-15) represents a different standing wave for
each value of n, so there is a set of wave functions. Figure 14.7 represents the wave
functions for several values of n. Each wave function corresponds to a different
frequency and wavelength. The frequencies and wavelengths are quantized (take on
values from a discrete set). In musical acoustics, the standing wave with n = 1 is called
the fundamental or the first harmonic, the standing wave with n = 2 is called the first
overtone to the second harmonic and so on. A string does not usually move as
described by a single harmonic. A linear combination (sum with coefficients) of
harmonics can satisfy the wave equation, and such a linear combination represents a
typical motion of a flexible string:

(oo}
) =Y a,t) sin(%) (14.2-22)
n=1
The fact that a linear combination of solutions can be a solution to the wave equation is
called the principle of superposition. The sum shown in Eq. (14.2-22) is called a
Fourier sine series. Fourier cosine series also exist, which are linear combinations of
cosine functions, and a more general Fourier series contains both sine and cosine terms.
The Fourier coefficients a,, a,, ... must depend on ¢ to satisfy the wave equation.
With the initial condition that the string is passing through its equilibrium position at
t = 0, the following sum is a solution:

z(x, 1) = g A, sin(nLE) sin(n—?) (14.2-23)
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Figure 14.7. Standing Waves in a Flexible String. (a) The wave function for n = 1. (b) The
wave function for n= 2. (c) The wave function for n = 3. (d) The wave function for n = 4.
These are the first few standing waves which satisfy the condition that the ends of the string are
fixed. The nodes are fixed. Between the nodes the string oscillates.

Exercise 14.2
Show by substitution that the series in Eq. (14.2-23) satisfies Eq. (14.2-3).

The constants 4, 4,, ..., can have any values. Any harmonic whose coefficient
does not vanish makes a contribution to the motion of the string, with constructive and
destructive interference that continually changes because the different harmonics have
different frequencies. Figure 14.8 shows a linear combination of three harmonics with
4 =1, 4,=0.2, and 43 = 0.1. Figure 14.8a shows the sum at time t = L/(4c), and
Figure 14.8b shows the sum at r = 3L/(4c).

Traveling Waves

In a string of finite length, stationary nodes are required at the ends of the string, which
prevents the occurrence of traveling waves. Traveling waves can occur in an infinitely
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Wave displacement
Wave displacement

WL c XL

(@) (b)
Figure 14.8. The Superposition of Three Harmonics of a Flexible String. (a) At time
t = L/(4c). (b) At time t = 3L/(4c). By the principle of superposition, a sum of the three harmonics

satisfies the wave equation. Constructive and destructive interference produces waves that are not
sinusoidal and do not maintain a fixed shape.

long string. A wave function that satisfies Eq. (14.2-3) and corresponds to a traveling
wave is

z(x, t) = a sin(kx — Kct) (14.2-24)

Exercise 14.3
Show by substitution that the function in Eq. (14.2-24) satisfies Eq. (14.2-3).

We can find the speed of a traveling wave by following the motion of one of the
nodes. At time ¢ = 0 there is a node at x = 0. As time passes this node will be located at
the point where x — ¢t = 0. Thus

x(node) = ¢t (14.2-25)

The node is moving toward the positive end of the x axis with a speed equal to ¢, as
stated earlier. Since ¢ = /T /p, increasing the mass per unit length decreases the speed
and increasing the tension force increases the speed.

*Exercise 14.4
What change would have to be made in the mass per unit length to quadruple the speed of
propagation? What change would have to made in the tension force to double the speed of
propagation?

If the function of Eq. (14.2-24) is replaced by
z(x, f) = A sin(xx + xct) (14.2-26)

the wave travels toward the negative end of the x axis with speed ¢. This function
satisfies the same wave equation as the function shown in Eq. (14.3-24).
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Exercise 14.5

a. Show that the function of Eq. (14.2-26) satisfies Eq. (14.2-3).
b. Show that the speed of the wave is equal to c.

In one wavelength, the argument of the sine function changes by 2x for fixed ¢, so
that the same relationship occurs as in Eq. (14.2-19) for a standing wave:

K =_ﬂ._ (14.2-27)

The relationship between the frequency and the wavelength can be obtained by
observing that in time ¢, the length of the wave “train” that passes a fixed point is

Length = ¢t

where ¢ is the speed. The number of wavelengths in this wave train is equal to

ct
Number = —
A
In time ¢, the number of oscillations is equal to

Number = vt

so that vt = ct/4A, or

(14.2-28)

0

Equation (14.2-28) is the general relation between wavelength and frequency. This
important equation holds for all kinds of waves, including sound waves and electro-
magnetic waves.

*Exercise 14.6
The speed of sound in air at sea level and room temperature is approximately equal to 338 ms™'.
Find the wavelength of a sound wave with a frequency of 440 s™', or 440 Hertz. (This frequency
is the frequency of “A” above “middle C” in a musical scale.)

Two traveling waves moving in opposite directions can interfere to produce a
standing wave. The two waves

Zp(x, 1) = A sin(kx — xct) (14.2-29a)
and
zp (x, 1) = A sin(kx + Kct) (14.2-29b)
interfere to give
z(x, 1) = A[sin(rex + ket) + sin(kx — Kct) (14.2-30)

which is the same as

z(x, t) = 24 sin(xx) cos(kct) (14.2-31)
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James Clerk Maxwell, 1831-1879,
made fundamental contributions to
electrodynamics, gas kinetic theory
and thermodynamics.

Albert A. Michelson, 1852-1931, was
an American physicist who was the
first American to win a Nobel Prize in
science (in 1907) and Edward W.
Morley, 1838—1923, was an American
chemist.

Exercise 14.7
Use trigonometric identities to obtain Eq. (14.2-31) from Eq. (14.2-30).

The Classical Wave Theory of Light

In 1865, Maxwell developed a mathematical theory of electromagnetism. In this theory,
there are four important vector quantities, the electric field &, the electric displacement
D, the magnetic field strength 5, and the magnetic induction B. The dependence of
these guantities on time and position is described by Maxwell’s equations, which
Maxwell deduced from empirical laws. He found that the electric and magnetic fields
can oscillate like waves, constituting electromagnetic radiation. Example of such
radiation are visible light, infrared radiation, ultraviolet radiation, X-rays, radio
waves, microwaves, etc., which differ from each other only in having different
wavelengths and frequencies. At first it was thought that light consisted of oscillations
in a medium called “the luminiferous ether.” The assumption that such a medium exists
was abandoned after Michelson and Morley demonstrated that the speed of light has the
same value for observers moving with different velocities. We now think of light and
other electromagnetic waves as oscillations that do not require any supporting medium.

A plane polarized wave traveling in the y direction can have an electric field that
oscillates in the y—z plane and a magnetic field that oscillates in the x-y plane. In a
medium with zero electrical conductivity (a perfect insulator or a vacuum), the
following equations for such a wave follow from Maxwell’s equations.'

£, 1 8,
#6128 (14.2-32)
oo
PH, 1 FPH ..
—8y2 _,EE afztz(] (14.2-33)
where
1
¢ =— (14.2-34)
JER

and where ¢ is called the permittivity of the medium and y 1s called the permeability
of the medium. The values of these quantities for a vacuum are denoted by ¢, and . In
SI units, the permeability of a vacuum has the value

Uy =41 x 1077NA™? (exact value by definition)
= 12.566370614... x 107" NA~? (14.2-35a)

and the permittivity of a vacuum is
gy = 8.8542 x 1072 C*N~'m™? (14.2-35b)

There is an additional condition from Maxwell’s equations that makes Egs. (14.2-32)
and (14.2-33) interdependent:

S Sa— | (14.2-36)

I'See I. C. Slater and N. H. Frank, Electromagnetism, McGraw-Hill, New York, 1947, pp 90ff, or any other
textbook on electricity and magnetism.
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The electric field cannot oscillate without oscillation of the magnetic field, and vice
versa. Equations (14.2-32) and (14.2-33) have the same form as Eq. (14.2-3), in which ¢
is the speed of propagation of the wave. The theory of Maxwell correctly predicts the
value of the speed of light.

EXAMPLE 14.3

Use the value of the permittivity of the vacuum and the permeability of the vacuum to show
that Eq. (14.2-34) gives a value for the speed of light in a vacuum that agrees with
experiment.

Solution

!
V(88582 x 10-2C2N-"m-2)(d4n x 10-'NA-2)
=2.9979 x 10°ms™"

cVaCuLIITI

Exercise 14.8
Show that the units in Eq. (14.2-34) are correct, using the fact that an ampere (A) is the same as a
coulomb per second.

A traveling-wave solution to Egs. (14.2-32) and (14.2-33) is

5

[ 3]
~1

)

v 1) =Eysin2n(y —cr)/ /] (14.2-
4.2-38)

H (yot) = A ysin[2n(y —er)/ 2] (1

[}

where &, and .# , are constants that obey Eq. (14.2-36). The wavelength 2 can take on
any real value.

Figure 14.9 shows & and # as functions of y at time 1 = 0 with & and # plotted in
the directions in which they point. As time passes, the traveling wave moves to the right
without changing its shape or wavelength. Since oscillating electric and magnetic fields
put oscillating forces on charged particles such as the electrons and nuclei in molecules.

N —

X ;5‘;(

4

Figure 14.9. The Electric and Magnetic Fields in an Electromagnetic Wave. The wave is
propagating to the right in the y direction. The electric field is oscillating in the z direction, and the
magnetic field is oscillating in the x direction. The nodes of the electric field and those of the
magnetic field coincide.
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14.3

molecules can absorb electromagnetic radiation. The converse is also true. According to
Maxwell’s equations, oscillating electric charges emit electromagnetic radiation.

An electromagnetic wave cannot penetrate a perfect conductor. Therefore, electro-
magnetic waves must have nodes at perfectly conducting walls, and will approximately
vanish at a real conducting wall. Reflection between walls in a conducting cavity can
produce standing electromagnetic waves.

The Old Quantum Theory

Near the end of the nineteenth century, several important phenomena were discovered
that classical physics was unable to explain. Three of these were explained early in the
twentieth century by new theories: Planck’s theory of blackbody radiation, Einstein’s
theory of the photoelectric effect, and Bohr’s theory of the hydrogen atom. These
theories are the major parts of what is called the “old quantum theory.” They were
based on assumptions of quantization, which is the idea that the value of a physical
quantity can equal one of a discrete set of values, but not any of the values between
those in the discrete set. We will discuss these theories for historical perspective, and
this section can be skipped without loss of continuity.

Planck’s Theory of Blackbody Radiation

If an object has a temperature of 1000°C, it glows with a red color, no matter what
material it is made of. At higher temperatures, it glows orange, yellow, white, or even
blue if the temperature is high enough. At any temperature an object with a lower
reflectivity glows more intensely at every wavelength, so that a black body, a model
system that reflects no radiation at any wavelength, has the maximum emissivity at
every wavelength.

The best laboratory approximation to a black body is not an object, but a small hole
in a hollow box. If the inside of the box (the “cavity”) is made fairly nonreflective, any
light falling on the hole from outside will be absorbed as it is reflected around in the
box. Measurements on the light emitted through the hole when such a box is heated
show that the amount of light emitted and its spectral distribution depend only on the
temperature of the walls of the box. Figure 14.10 shows the spectral radiant emittance
n of a black body as a function of wavelength for several temperatures. This quantity is
defined such that n(d) d1 is the energy per unit time per unit area emitted in the
wavelengths lying between A and .4 dA. The visible part of the electromagnetic
spectrum, which ranges from about 400 nm to 750 nm, is labeled in the figure.

At 2000K, only the red part of the visible spectrum (around 650 to 750nm) is
represented, but at higher temperature the other visible wavelengths are also repre-
sented. At around 6000 K the maximum in the curve is in the middle (green) portion of
the visible region, and black-body radiation of this temperature is similar to sunlight.
Near room temperature, almost all of the radiation is in the infrared region. It is this
radiation from the surface of the earth that is involved in the greenhouse effect in the
earth’s atmosphere, which is the absorption in the upper atmosphere of infrared
radiation emitted by the earth. It is principally due to CO, H,0, CH,, and various
chlorofluorocarbons.

The total radiant emittance (emission per unit area per unit time, summed over all
wavelengths) is equal to the area under the curve. The Stefan-Boltzmann law is an
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John William Strutt, third Baron
Rayleigh, 1842—1919, was the 1904
Nobel Prize winner in physics, and Sir
James Jeans, 1877-1946, was a
British astronomer and physicist.

T
1
\
\
\ Rayleigh—Jeans
\ theory for
\ /' 3000K
\
\
\
\
\
3 \
5 \
= \
g T, = 3000 K %
8 \
8 \
B \
g‘ \
] T, = 2500 K N
@ N
~
~
~
T, = 2000 K
0 1000 2000 3000

Ultraviolet Visible Infrared region
region  region

AMnm ———

Figure 14.10. The Spectral Radiant Emittance of a Black Body for T, = 2000K, T, = 2500K,
and T, = 3000 K. The maximum in the curve shifts to shorter wavelengths as the temperature is
raised. The Rayleigh—Jeans curve and the experimental curve coincide for sufficiently long
wavelengths.

empirical law that relates the total radiant emittance to the absolute temperature of the
black body:

(Total radiant emittance) = oT* (14.3-1)
The Stefan—Boltzmann constant ¢ has the value
o=>567051 x 1078 Jm™2s7'K™* = 5.67051 x 10 * Wm™2 K™ (14.3-2)

Rayleigh and Jeans constructed a classical theory of black-body radiation. They
defined as their system the set of standing electromagnetic waves that could exist inside
a cavity. For a rectangular cavity, they counted the possible standing waves of various
wavelengths that could exist in the cavity with nodes at the walls and computed the
average energy of each standing wave as a function of temperature using statistical
mechanics (see Chapters 21 and 22). Their result was

2nckgT

n(A)di = =2~ dj (143:3)
A

where ¢ is the speed of light, kg is Boltzmann’s constant, and T is the absolute
temperature.
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Max Planck, 1858—1947, received the
Nobel Prize in physics in 1918 for this
theory, although at first most other
physicists were reluctant to believe
that it was correct.

Figure 14.11. The Quantized Energies
of an Oscillator as Postulated by
Planck. The horizontal line segments
are plotted at the heights of the assumed
energy values, 0, hv, 3hv, 4hv, 5hy, Bhv,
7hv, etc.

Equation (14.3-3) agrees well with experiment for large values of the wavelength
(much larger than visible wavelengths), but predicts that the spectral radiant emittance
becomes large without bound in the limit of short wavelength. This failure of the
Rayleigh-Jeans theory was called the “ultraviolet catastrophe.” In 1900, Planck devised
a new theory of black-body radiation that eliminated the ultraviolet catastrophe.
Although he was working to obtain a result in agreement with experimental data, his
theory is based on assumptions (hypotheses) that at the outset had no direct evidence to
support them. The following statements are a simplified version of assumptions that
lead to his result:?

1. In the walls of the cavity there exist oscillating electric charges. Each such oscillator
has a characteristic fixed frequency of oscillation, but many oscillators are present
and every frequency is represented.

2. The standing waves in the cavity are equilibrated with the oscillators in such a way
that the average energy of standing waves of a given frequency equals the average
energy of the oscillators of the same frequency.

3. The energy of a wall oscillator is quantized. That is, it is capable of assuming only
one of the values

E=0,hv,2hv,3hv,dhv, ... nhv, ... (14.3-4)

where v is the frequency of the oscillator and where / is a new constant, now known
as Planck’s constant. The quantity n, which can take on any nonnegative integral
value, is called a quantum number. A quantum number is an integer or some other
value that can be used to specify which state occurs from a set of possible states.
Figure 14.11 schematically shows this energy quantization. Quantization has been
compared to a ladder. A person can stand on any rung of a ladder, but nowhere
between the rungs. The energy can take on any of the values in Eq. (14.3-4), but no
value between these values.

4. The probability of any energy is given by the Boltzmann probability distribution, Eq.
(1.8-25).

The result of Planck’s derivation is that the spectral radiant emittance is given by

2mhc?

07 T R el
n(4) BT 1)

(14.3-5)

This formula agrees accurately with experimental measurements of blackbody radiation
at all temperatures and wavelengths if an optimum value of the constant 4 is taken. By
fitting data available at the time, Planck was able to get a value of h approximately equal
to the presently accepted value, 6.62608 x 1073 Js. Planck’s formula agrees with an
empirical law known as Wien’s law, with the result of Rayleigh and Jeans for large
wavelengths and with the Stefan-Boltzmann law.

EXAMPLE 144

Find the relation of the wavelength of maximum spectral radiant emittance to the
temperature.

> M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York, 1966. pp.
10fT.
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Albert Einstein, 1879—1955, was a
German-Swiss-American physicist
who received the 1921 Nobel Prize in
physics for this work. He was the
greatest physicist of the twentieth
century and made fundamental
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theoretical physics

Solution
We set the derivative of the function of Eq. (14.3-5) equal to zero:

d}‘{ 5 2,,[;162 (hc//lkBT)ehc’f':‘k“T _ 5(ehc/).k37‘ _ 1)

=0
dl Aé[ehc/i_fcﬁr = 1]
This expression can vanish only if the numerator vanishes, which is equivalent to
he ;
=5(1 — —hef hpacksg T
j‘makaT ( ¢ )

This equation must be solved by numerical approximation. The result is the Wien
displacement law,
he 2.898 x 10 mK

;Lmax = (02014)_ =

s : (14.3-6)
B

*Exercise 14.9
Find the temperature that corresponds to a wavelength of maximum spectral emittance in the red
part of the visible spectrum at 650. nm.

Exercise 14.10
Show that in the limit as 2 — oo, Eq. (14.3-5) agrees with Eq. (14.3-3).

*Exercise 14.11
Use the definite integral

o 3 -
J - dx = e (14.3-7)

0 e —1 1

to derive the Stefan-Boltzmann law, Eq. (14.3-1). Calculate the theoretical value of the Stefan—
Boltzmann constant.

Einstein’s Theory of the Photoelectric Effect

When a metal plate inside an evacuated glass tube is illuminated with light of
sufficiently short wavelength, it emits electrons. Electrons are not ejected unless the
wavelength of the incident light is at least as small as a threshold wavelength, and the
maximum energy of the ejected electrons depends only on the wavelength. There was
no explanation for this behavior until 1905, when Einstein published a theory for the
photoelectric effect. This theory is based on the hypothesis that the energy in a beam of
light consists of discrete “quanta,” and that each quantum has an energy

E:hv:ﬁ

14.3-8
7 ( )

where 4 is Planck’s constant and ¢ is the speed of light. Equation (14.3-8) is known as
the Planck-Einstein relation. The quanta of light are called photons.

Einstein obtained the quantitative explanation for the photoelectric effect from Eq.
(14.3-8). The energy of an electron ejected from the metal is equal to the energy of the
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photon minus the energy required to detach the electron from the metal. The work
function /¥ is the minimum energy required to detach an electron from a given
substance. The maximum electron energy is

h 3
E . (electron) = hy — W = _C - W
A

In 1916 Millikan made accurate measurements of the photoelectric effect that agreed
well with Eq. (14.3-9).

Since light exhibits a particlelike nature in some experiments and wavelike properties
in other experiments, we say that it has a wave—particle duality. This terminology
means that light appears in some circumstances to act like a wave and in other
circumstances to act like a particle. We cannot adequately answer the question: “What
is light really like?” We use the wave description when it explains the observations of a
particular experiment, and use the particle description when it explains the observations
of another experiment.

(14.3-9)

*Exercise 14.12

The work function of nickel equals 5.0 eV. Find (a) the threshold wavelength for nickel and (b) the
maximum electron speed for a wavelength of 195 nm,

Bohr’s Theory of the Hydrogen Atom

Excited hydrogen atoms emit light when electrons in higher energy states drop to lower
energies. However, only certain wavelengths are emitted. Four wavelengths are present
in the visible light and other wavelengths occur in the ultraviolet and in the infrared.
When viewed in a spectroscope, each wavelength produces an image of the slit of the
spectroscope, resembling a line segment. Such a set of separated lines is called a line
spectrum and the slit images are called spectral lines.

Rydberg was able to represent the wavelengths of all of the spectral lines of hydrogen
atoms with a single empirical formula:

1 Taal
7= 2)

where n; and n, are two positive integers and Ny is a constant known as Rydberg’s
constant for the hydrogen atom, equal to 1.09677581 x 107m~'. Using classical
physics, no explanation for this relationship could be found.

In 1911, Rutherford scattered a-particles from a thin piece of gold foil. From the way
in which the a-particles were scattered, he concluded that atoms contained a very small
positive nucleus containing almost all of the mass of the atom, with the negative
electrons orbiting around the nucleus. However, according to the electrodynamics of
Maxwell, an orbiting electron would emit electromagnetic radiation, losing energy and
falling onto the nucleus and collapsing the atom. Classical physics was unable to
explain either the line spectrum of the hydrogen atom or its continuing existence.

In 1913, Bohr published a theory of the hydrogen atom, based on unproven
assumptions. A simplified version of Bohr’s assumptions is:

(14.3-10)

I. The hydrogen atom consists of a positive nucleus of charge ~ and an electron of
charge —~ moving around it in a circular orbit. The charge ¢ had been determined
by Millikan to have the value 1.6022 x 107" C.
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Figure 14.12. The Quantized Angular
Momentum Values of Electronic
Motion in a Hydrogen Atom as Postu-
lated by Bohr. The horizontal line
segments are plotted at the heights of
the assumed angular momentum values,
h/2r, 2h/2m, 3h/2n, 4h/2m, 5h/2m,
6h/2n, 7Th/2n, etc.

Figure 14.13. The Quantized Bohr
Orbits. The radius of an electron orbit
can take on only the values a,
4a,....n%a,... where n is a positive
integer.

2. The angular momentum (see Appendix D) of the electron is quantized: its
magnitude can take on one of the values h/2n, 2h/2r, 3h/2n, 4h/27, etc., where
h is Planck’s constant. No other values are possible. Figure 14.12 schematically
shows the quantization of the angular momentum.

3. Maxwell’s equations do not apply. Radiation is emitted or absorbed only when a
sudden transition is made from one quantized value of the angular momentum to
another.

4. The wavelength of emitted or absorbed light is given by the Planck-Einstein
relation, Eq. (14.3-8), with the energy of the photon equal to the difference in
energy of the initial and final states of the atom.

5. In all other regards, classical mechanics is valid.

We now derive the consequences of Bohr’s assumptions. For simplicity, we assume
that the electron orbits around a stationary nucleus. This is a good approximation, but it
can be removed if desired by replacing the mass of the orbiting electron by the reduced
mass of the electron and the nucleus (see Appendix D). To maintain a circular orbit,
there must be a centripetal force on the electron:

mvz

Fi=—— (14.3-11)
r
where v is the speed of the electron, m is its mass, and r is its distance from the nucleus
(see Eq. (D-13) of Appendix D).

*Exercise 14.13
Find the centripetal force on an object of mass 1.50 kg if you swing it on a rope so that the radius
of the orbit is 2.50 m and the time required for one orbit is 1.00 s (a speed of 9.43ms™").

The centripetal force is provided by the electrostatic attraction of the positive nucleus
for the negative electron:

mv2 f}z

T Tt R

where g is the permittivity of the vacuum.
The angular momentum of the electron in a circular orbit is given by Eq. (D-15) of
Appendix D. It is quantized, according to assumption 2:

_nh

=— 14.3-1
o ( 3)

L =rmv

where the quantum number » is a positive integer.
Equation (14.3-13) is solved for the speed v and the result is substituted into Eq.
(14.3-12). The resulting equation is solved for r to give

h24ﬁ80 2 2
= = 14.3-14
s Ve ( )

where a; is equal to 5.29 x 107" m 52.9pm and is called the Bohr radius. Figure
14.13 depicts the first few Bohr orbits.
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Figure 14.14. The Quantized Electron
Energies by the Bohr Theory. The
energy values are all negative, since an
energy value of zero corresponds to
enough energy barely to remove the
electron from the atom.

Exercise 14.14
a. Obtain Eq. (14.3-14) from Egs. (14.3-12) and (14.3-13).
b. Using the accepted values of the physical constants, verify the value of the Bohr radius.

The energy of the electron is also quantized. The potential energy for an electron of
charge —# in an orbit of radius » around a nucleus of charge e is

22

Y =— (14.3-15)
dmeyr

where we choose a value of zero for the potential energy at » — oo,

Exercise 14.15

Using Eqg. (D-6) of Appendix D and Eq. (B-41) of Appendix B, show that the potential energy of
Eq. (14.3-15) leads to the force expression of Eq. (14.3-12).

The kinetic energy is given by

2
f:%m&:%%gor:%m (14.3-16)
where Eq. (14.3-12) has been used to replace v*. The kinetic energy is equal to half of
the magnitude of the potential energy. This is one of the consequences of the virial
theorem of mechanics that holds for any system acted upon only by electrostatic
forces.?
The total energy of the hydrogen atom is

2me*

SN e e EakTaRe
! (4ne,)*h2n?

(14.3-17)

where we have used Eq. (14.3-14) for the value of r. The energy is determined by the
value of the quantum number, n. Figure 14.14 depicts the first few energy levels. Each
horizontal line segment is placed at a height proportional to the energy value.

The energy of an emitted or absorbed photon is equal to the difference between two
quantized energies of the atom:

2nme* (1 1
E =E, -E =——|5—-= 14.3-18
(photon) ny ny (47[80)2}12 (?’.’% h%) ( )

Figure 14.15 depicts the first few transitions corresponding to emission of photons.
Using the Planck-Einstein relation for the energy of the photon, Eq. (14.3-8),
1 E, -E,  2mme (1 1)

A he T (4meg)hic

This is the formula of Rydberg, Eq. (14.3-10), with the constant 9% given by the
expression in front of the bracket. The first set of transitions shown in Figure 14.15, in
which the lower-energy state (n, state) is the n = 1 state, corresponds to the series of
spectral lines known as the Lyman series. The second set of transitions, in which

- iy 14.3-
i (14.3-19)

3 Ira N. Levine, Quantum Chemistry, 4th ed., Prentice-Hall, Englewood Cliffs, N.J., 1991, pp. 4341T.
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Figure 14.15. The Transitions bet-
ween Bohr Theory Energies for the
Hydrogen Atom. These are some of
the transitions that lead to the wave-
lengths given by the Rydberg formula.

14.4

Prince Louis Victor de Broglie, 1892—
1977, was a graduate student in 1923
and won the Nobel Prize in physics in
1929 for this work.

ny = 2, is the Balmer series. The next series, which is not shown, is the Paschen series,
When the values of the physical constants are substituted into Eq. (14.3-19), we get

N = 1.097373 x 10" m™! (14.3-20)

This value is labeled with the subscript oo, corresponding to the assumption that the
nucleus is stationary, as it would be if infinitely heavy. if we replace the mass of the
electron by the reduced mass of the electron and proton to correct for the actual motion
of the nucleus as in Eq. (D-27) of Appendix D, we get

Ry = 1.09678 x 10" m™! (14.3-21)

which is in agreement with the experimental value. This value of Rydberg’s constant is
for wavelengths measured in a vacuum. Wavelengths measured in air are slightly shorter
than vacuum wavelengths, so the value of i in air is larger by a factor of 1.00027, the
refractive index of air for visible wavelengths.

Exercise 14.16

a. Substitute the values of the constants into the expression of Eq. (14.3-19) to verify the value
of M.

b. Use the value of the reduced mass of the proton and electron to calculate the value of 9,
from the value of 9.

c. Calculate the wavelength and frequency of the light emitted when n changes from 4 to 2.
What color does this correspond to?

De Broglie Waves and the Schrédinger Equation

Even though the Bohr theory gave the correct values for the energies of the hydrogen
atom, it failed when applied to any other atoms or to any molecule. The theories of
Planck, Einstein, and Bohr are now known as the “old quantum theory,” and have been
supplanted by the quantum theory of Schrédinger and Heisenberg, based on the “matter
waves” of de Broglie.

De Broglie Waves

In 1923 de Broglie was trying to find a physical justification for Bohr’s hypothesis of
quantization of angular momentum. In classical physics, one thing that is quantized is
the wavelength of standing waves, given for example by Eq. (14.2-19). De Broglie
sought a way to relate this to Bohr’s theory of the hydrogen atom, and came up with the
idea that a moving particle such as an electron might somehow be accompanied by a
“fictitious wave.”*

According to Einstein’s theory of relativity, a photon of energy £ has a mass m such
that

E = mc* (14.4-1)

* Jammer, op. cit., pp. 243ff (Note 2),
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where ¢ is the speed of light, even though it has no rest-mass. If the Planck—Einstein
relation, Eq. (14.3-8), is used for the energy and if mc is replaced by the momentum p,
Eq. (14.4-1) becomes

h h

f:pc or 1=5 (14.4-2)
where A is the wavelength. De Broglie deduced that the velocity of the wave
accompanying a particle was the same as the velocity of the particle if the wavelength
is given by Eq. (14.4-2).

Gel W (14.4-3)
muv

We omit most of de Broglie’s argument, which is more complicated than simply saying
that Eq. (14.4-3) is analogous to Eq. (14.4-2).

The quantization assumption of Bohr’s theory arises naturally from Eq. (14.4-3) if
one assumes that the circumference of a circular electron orbit in a hydrogen atom is
equal to an integral number of wavelengths. This assumption means that the wave
repeats itself with the same phase (with crests in the same positions) on each trip around
the orbit, as depicted in Figure 14.16a. The situation depicted in Figure 14.16b is
assumed not to occur. For a circular orbit

., n
2nr = i = — (14.4-4)

mor = — (14.4-5)
T

Although he had established his wave-particle relation only for the motion of
electrons in the hydrogen atom, de Broglie hypothesized this relation to hold for any
motion of any particle. This proposal of matter waves was revolutionary. When

As assumed by de Broglie

(a)

Mismatch—contrary to assumption

(b)

Figure 14.16. De Broglie Waves around a Closed Orbit. (a) An integral number of wave-
lengths on the circumference. Only if the circumference is an integral multiple of the wavelength.
(b) Not an integral number of wavelengths on the circumference. In this case, a unique point
occurs at which there is a discontinuity in the wave.
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de Broglie presented his doctoral thesis containing this proposal, the examining
committee refused to believe that it might correspond to physical reality,

EXAMPLE 14.5

Calculate the de Broglie wavelength of a baseball of mass 3.1 ounces thrown at 95 miles
per hour.

Solution

_ 6.6261 x 107 Js (1602 11b 36005\ ( 1 mi )
~ (5.10z)(59mi/h) \ 11b /\0.4536kg/\ 1h /\1609m
=11x10%m

This value suggests why matter waves are not observed for objects of ordinary size.

De Broglie suggested at his final oral examination that electron diffraction by crystals
could verify his theory. In 1927, Davisson and Germer® accidentally grew a single
crystal while heating a piece of nickel. When they irradiated this piece of nickel with a
beam of electrons, they observed diffraction effects, verifying the existence of
de Broglie’s matter waves,

*Exercise 14.17
Find the speed of electrons with a de Broglie wavelength equal to 2.15 x 10" m, the lattice
spacing in a nickel crystal,

The notion of a wave moving along with a particle as it traces out a classical
trajectory has been abandoned. We now speak of a wave—particle duality for electrons
and other particles, with the wavelike properties inherently belonging to the object and
not to an accompanymg wave. This wave-particle duality is illustrated by a hypothetical
experiment.® A beam of electrons, all with the same speed, is allowed to stream toward a
partition with two slits in it, as depicted in Figure 14.17a. At some distance from the
other side of the partition is a screen coated with a material such as zinc sulfide. which
glows when an electron strikes it.

A glowing pattern of bands is observed on the screen when an intense beam of
electrons is passed through the slits. This pattern is schematically depicted in Figure
14.17b, where the intensity of the glow is plotted as a function of position on the screen.
The pattern is explained by the constructive and destructive interference of waves
appearing to pass through the two slits, since the waves are diffracted by the slits and
produce waves moving in various directions from the slits. If the difference in the path
lengths from the two slits to a given point on the screen equals an integral number of
wavelengths, there is constructive interference and a glowing band. Between the bands.
there 1s destructive interference and little or no glow.

If the intensity of the source is decreased so that electrons pass through the slits one
at a time, it can be observed that each electron lands at a single point on the screen.
There is a tiny localized flash when each electron arrives. If the flashes are recorded and
summed up, exactly the same pattern of diffraction bands appears as with an intense

5C. I Davisson and L. H. Germer, Phys. Rev. 30, 705 (1927).

®R. P Feynman, R. B, Leighton, and M. Sands, The Fevnman Lectures on Physics, Vol. 3. Addison-
Wesley, Reading Mass, 1965, Ch. 1.
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Pattern of
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Detector screen which
glows where electrons
strike

Electron Barrier with
two slits

source \E
(a)

(b)

With slit 2 closed With slit 1 closed
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Figure 14.17. A Hypothetical Experiment with Electrons Passing through Two Slits. (a) The
apparatus. (b) The intensity of the glow due to electrons arriving at the screen in (a) with both
slits open. This diagram shows the diffraction pattern that proves that the particles have a wavelike
character. (c) The intensity of the glow due to electrons arriving at the screen in (a) with one
slit open at a time. If only one slit is open at a time, no diffraction pattern occurs.

beam of electrons. If one slit is covered while the electrons continue to pass through the
second slit, there is a single band distributed on the screen. If the first slit is uncovered
and the second slit is covered another single band is observed. The sum of these two
single bands shows no interference effect, as shown schematically in Figure 14.17c.

Our observations are interpreted as follows: The path of any electron from the source
to the screen cannot be specified when no attempt is made to detect its location along
the path. The position of the electron can be determined only by doing something to it
such as stopping it with a screen. Only when the screen is placed at the slits is it
possible to say which slit the electron passes through. When the screen is some distance
from the slits, there is no way to say whether the electron went through slit 1 or slit 2,
and wavelike interference properties are observed as though the electron passed through
both slits in a delocalized wavelike fashion.
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Erwin Schrédinger, 1887—-1961, was
an Austrian physicist who shared the
1933 Nobel Prize in physics with

P. A. M. Dirac, who pioneered the
development of relativistic quantum
mechanics.

The Schrodinger Equation

In 1926, Schrédinger published a series of four papers containing a wave equation for
de Broglie waves. The first three papers presented the time-independent version of the
Schrodinger equation and applied it to the hydrogen atom, rotation and vibration of
diatomic molecules, and the effect of an external electric field on energy levels. The
time—gependem version of the equation was reported in the fourth paper at the end of
1926.

Nonrigorous Derivation of the Schrédinger Equation

In the formal theory of quantum mechanics, the Schrodinger wave equation is taken as
a postulate (fundamental hypothesis). In order to demonstrate a relationship with the
classical wave equation, we obtain the time-independent Schrédinger equation non-
rigorously for the case of a particle that moves parallel to the x axis. For a wave along
the x axis, the classical coordinate wave equation of Eq. (14.2-9) is

8 W L (14.4-6)
A

where we have used Eq. (14.2-19) to replace the wave constant k in terms of the
wavelength /. Use of the de Broglie relation, Eq. (14.4-3), to replace 4 gives

vy 4m
—t—m Y =0 14.4-7
dxr k2 v ( )
This equation now represents a matter wave moving along the x axis.
We eliminate the speed v from our equation, using the relation

E=X+7 ={m? + ¥ (x) (14.4-8)

where " is the kinetic energy, ¥"(x) is the potential energy, and E is the total energy.
The result is the time-independent Schrédinger equation for one-dimensional

motion:
ik d?'l}/
e Y (9 =By (14.4-9)

where i is the coordinate wave function or time-independent wave function. We
introduce the symbol # (“h-bar™):

h
h=— (14.4-10)
2n

Exercise 14.18
Carry out the algebra to obtain Eq. (14.4-9) from Eq. (14.4-7).

The left-hand side of Eq. (14.4-9) can be abbreviated by

H=-—"_ 4 ¥ (14.4-11)

" The time-independent equations are presented in 4nn. Physik, 79, 361 (1926), 79, 489 (1926), and 80,
437 (1926), and the time-dependent equation is presented in Ann. Physik, 81, 109 (1926).
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so that
Hy =Ey (14.4-12)

The quantity H is a mathematical operator, since it stands for the carrying out of
mathematical operations. It is called the Hamiltonian operator. Mathematical opera-
tors will be discussed in Chapter 15.

The Time-Dependent Schrédinger Equation

For motion in the x direction, the time-dependent Schrodinger equation is postulated to

be
iy =il (14.4-13)
ot
where i is the imaginary unit
=1 (14.4-14)

There is no way to construct the time-dependent Schrddinger equation from the
classical wave equation because that wave equation is second order in time while the
Schrédinger equation is first order in time. A first-order differential equation requires
one initial condition to apply a general solution to a specific case, while a second-order
differential equation requires two initial conditions. Equation (14.2-12) required one
initial condition related to the position of the string and one related to its velocity in
order to assign values to the two constants ' and G. The uncertainty principle of
quantum mechanics (to be discussed later) implies that positions and velocities cannot
be specified simultaneously to arbitrary accuracy. For this reason only one initial
condition is possible, which requires the Schriddinger equation to be first order in time.
The fact that the equation is first order in time also requires that the imaginary unit must
occur in the equation in order for oscillatory solutions to exist. The function ¥ is the
time-dependent wave function, or the displacement of the matter wave as a function of
position and time. In this chapter and the next we will use a capital psi (‘\¥) for a time-
dependent wave function, and a lower-case psi (/) for a coordinate wave function.

The time-independent Schrodinger equation, Eq. (14.4-12), can be obtained from the
time-dependent equation by separation of variables. We assume a trial solution of the
same type as with the classical wave function:

Y(x, 1) = yr(x){(r) (14.4-15)

We use the same symbols as for the factors in the classical wave function, Eq. (14.2-4),
but do not mean to imply that they are the same functions. We substitute (14.4-15) into
Eq. (14.4-13) and divide by y(x){(¢), obtaining

i d{

Hj=—

1
o dt

Y

The variables x and ¢ are separated in this equation. Each side is equal to the same
constant, which we denote by E:

(14.4-16)

—Hy =E (14.4-17)
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and

ihdl

o= (14.4-18)

Multiplication of the first equation by s and of the second equation by {/i# gives

HY = Ey (14.4-19)
and

d{ E

Z=pl (14.4-20)

Equation (I4.4-19) is the same as the time-independent Schrodinger equation, Eq.
(14.4-12), so y is the same coordinate wave function as in that equation and E is the
constant energy of the system. Equation (14.4-20) has the solution

{(t) = Ceb'/h = CemiE/h (14.4-21)

where C is a constant. Since the Schridinger equation is satisfied for any value of C, we
take C = 1 and the complete wave function is

W(x, t) = Y(x)e "t (14.4-22)

If we have a solution to the time-independent Schridinger equation, including
knowledge of the value of the energy E, we can immediately write a solution to the
time-dependent equation by multiplying the coordinate wave function by the function .
This type of solution, with the coordinate and time dependence in separate factors,
corresponds to a standing wave, as in the classical wave. There are also solutions of the
time-dependent Schrodinger equation that correspond to traveling waves, and the time-
independent Schrodinger equation does not necessarily apply to such solutions. The
time-dependent equation applies to all cases.

The coordinate wave function can in many cases be chosen to be a real function. The
function { is always complex, and can be written as a real part plus an imaginary part
(see Appendix B):

e B = cos(—Et/h) + isin(—Et/h) = cos(Et/#) — isin(Et/#) (14.4-23)

where we have used the fact that the cosine is an even function and the sine is an odd
function. For an even function, f(—x) = f(x), and for an odd function, f(—x) = —f(x).
The real part and the imaginary parts oscillate with the same frequency, but out of
phase. If the coordinate wave function is real, the real and imaginary parts of the
complete wave function have stationary nodes in the same locations, since they have the
same coordinate factor.

The Schrodinger Equation in Three Dimensions

For a single particle moving in three dimensions, the Hamiltonian operator is

~ ¥ P a2 _
i (axz el )+"V (x, y,z)————Vz +7(x,,2) (14.4-24)
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where the potential energy ¥ can depend on x, y, and z. The operator V* is the
Laplacian operator, introduced in Eq. (11.2-13) and in Eq. (B-40) of Appendix B. In
cartesian coordinates,

, ® F P ]
Since the Hamiltonian operator depends on x, y, and z, the coordinate wave function
will depend on x, y, and z. To write the Schrodinger equation for a particular system,
one must find an expression for the potential energy function that applies to that system.
If it is convenient to express the potential energy in coordinates other than cartesian
coordinates, the Laplacian operator can also be expressed in those coordinates in order
to obtain a solution (see Appendix B).

The Schrodinger Equation for a Mutiparticle System

If the system consists of n point-mass particles moving in three dimensions, the
potential energy can depend on 3n coordinates. The Hamiltonian operator for such a
system is

briidtmit o2 : 14.4-26
His j=12m.VJ +7(q) ( )

Wk

n -ﬁ.’l

where Vf is the Laplacian operator for the coordinates of particle number j and where
we use the abbreviation ¢ to stand for the coordinates of all » particles. Since the
Hamiltonian operator contains the coordinates of all of the particles, the solution to the
Schrodinger equation must depend on all of these coordinates. Just as with the
Schrodinger equation of a single particle, a solution to the time-independent Schré-
dinger equation for a system of many particles gives a solution to the time-dependent
Schrédinger equation when multiplied by the time-dependent function of Eq. (14.4-21),
but there can be other solutions of the time-dependent Schrddinger equation that are not
of this form.

Exercise 14.19
Carry out the steps to show that equations analogous to Eqs. (14.4-19) and (14.4-20) hold for a
system of n particles.

Eigenvalue Equations

The time-independent Schrodinger equation is one of a class of equations called
eigenvalue equations. The word “eigenvalue” is a partial translation of the German
word Eigenwert. A full translation is “characteristic value.” An eigenvalue equation
has on one side an operator operating on a function, and on the other side a constant
(the eigenvalue) multiplying the same function, which is called the eigenfunction. In
the time-independent Schrédinger equation, the eigenvalue is £, the value of the energy,
and is called the energy eigenvalue. The coordinate wave function is often called the
energy eigenfunction.

There is generally a set of eigenfunctions to a given eigenvalue equation, with each
eigenfunction corresponding to a specific eigenvalue. Two common cases occur: (1) the
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14.5
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Figure 14.18. Mechanical Variables of
a Particle in a Hard One-Dimensional
Box. (a) The position according to
classical mechanics. (b) The velocity
according to classical mechanics.
This diagram shows that the particle in
a box moves back and forth at constant
speed, according to classical mechanics.

eigenvalue can take on any value within some range of values (a continuous spectrum
of eigenvalues); (2) the eigenvalue can take on values only from a discrete set, with the
values between the allowed values not permitted (a discrete spectrum of eigenvalues).
The occurrence of a discrete spectrum of eigenvalues corresponds to quantization.

In addition to satisfying the Schrodinger equation, the wave function must satisfy
other conditions. Since it represents a wave, we assume that it has the properties that are
shared by all waves: (1) the wave function is single-valued, (2) the wave Sfunction is
continuous, and (3) the wave function is finite. These properties will lead to boundary
conditions that have important consequences.

The Particle in a Box. The Free Particle

In this section we solve the time-independent Schrodinger equation for the two simplest
cases. This analysis will show how the wave function and the values of the energy are
determined by the Schrédinger equation and the three conditions obeyed by the wave
function,

The Particle in a One-Dimensional Box

The particle in a one-dimensional box is a model system that consists of a single
structureless particle that can move parallel to the x axis. The particle moves without
friction, but is confined to a finite segment of the x axis, from x = 0 to x = 4. Inside this
interval (the box) there is no force on the particle. This model system could represent a
particle sliding in a tight-fitting (but frictionless) tube with closed ends or a bead sliding
on a frictionless wire between barriers. The principal chemical system represented by
this model is an electron moving in a conjugated system of single and double bonds.
The model only very crudely represents this system since the electron interacts with the
other electrons and with nuclei, but we will discuss this application in Chapter 18. Since
the particle experiences no force inside the box, its potential energy is constant inside
the box, and we choose the value zero for this constant. In order to represent absolute
confinement within the box we say that this potential energy outside the box is made to
approach infinity.

Figure 14.18a shows the position of the particle as a function of time according to
classical mechanics, and Figure 14.18b shows the velocity of the particle as a function
of time. We will see that the quantum mechanics solution is qualitatively very different
from this behavior. The time-independent Schridinger equation for the system is

ﬁz d2¢+7f(x)w() Ey(x) (14.5-1)
—_— X) = S-
2m dx? ¢
where /(x) is the coordinate wave function (energy eigenfunction) and E is the energy
eigenvalue. We divide the x axis into three regions and solve separately in each region:

RegionI:  x <0
RegionIl: 0O<x<a
Region III: a < x

We will adjust the three solutions so that  is continuous at the boundaries between the
regions,
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In regions I and III the potential energy must approach an infinite value, so we write
Eq. (14.5-1) as
d*y . 2mv
dxz V00 ﬁ?.
We assume that £ is finite, so the right-hand side of this equation is finite. The left-hand
side would be infinite unless i vanished, so the solution is

2mE
_ﬁ_zqf, (14.5-2)

Yy =y =0 (14.5-3)
For region 11
Y m .
=Ky (14.5-4)
where « is given by
2mE
K = = (14.5-5)
Equation (14.5-4) is of the same form as Eq. (14.2-9). Its general solution is
W (x) = Bcos(icx) + Csin(kx) (14.5-6)
In order for  to be continuous at x =0 and x = @, we must have the boundary
conditions
VPO =y00 =0,  yP@) =y™@=0 (14.5-7)

These conditions are similar to the boundary conditions for the vibrations of a string
described in Section 14.2. In order for !l/(“)(O) to vanish, the constant B must vanish,
because cos(0) equals unity while sin(0) equals zero. Thus

W0 (x) = Csin(iex) (14.5-8)

The condition that w(ll)(a) vanishes imposes a condition on x, as in Eq. (14.2-14). The
sine function vanishes when its argument is an integral multiple of , so that

_ T

a

AT = Ka or K (14.5-9)
where 7 is a quantum number that can take on integral values. Specifying a value of n is
equivalent to specifying which energy eigenfunction is “occupied” by the system. We
can now write a formula for the set of energy eigenfunctions:

Y, x) = Csin(naﬂ) (14.5-10)

where we now omit the superscript (II).

The energy eigenvalues are quantized, with values determined by the value of n:
ﬁZKE ﬁ2n2,n.2 h2n2
2m ~ 2ma® ~ 8ma?
We disregard negative values of n, because replacing a value of n by its negative does
not change the energy eigenvalue and is equivalent to changing the sign of C since the
sine is an odd function. We also disregard n = 0 since n = 0 corresponds to iy = 0. The
value of C is unimportant at this stage since the Schrédinger equation is satisfied for
any value of C and since the energy eigenvalue does not depend on C. We will later
introduce a normalization procedure to assign convenient values to such constants.

There is a single energy eigenfunction for each energy eigenvalue. This is called the
nondegenerate case. In the degenerate case there is more than one energy eigenfunc-

. (14.5-11)
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Figure 14.19. The Solutions to the Schrédinger Equation for a Particle in a One-Dimensional
Box. (a) The energy eigenvalues. (b) The energy eigenfunctions. Compare the information
about the motion of the particle in this figure with that in Figure 14.18.

tion corresponding to a given eigenvalue, and the number of eigenfunctions for a given
eigenvalue is called its degeneracy. A single eigenfunction never corresponds to more
than one eigenvalue. Figure 14.19a represents the energy eigenvalues by horizontal line
segments at heights proportional to their energy values and Figure 14.19b shows the
wave functions (energy eigenfunctions). Each wave function is plotted on a separate
axis, placed at a height in the diagram corresponding to its energy eigenvalue. Equation
(14.5-10) resembles Eq. (14.2-14) for the vibrating string and each wave function in
Figure 14.19b resembles one of the standing waves in Figure 14.7.

The quantization of the energy eigenvalues comes not only from solving the
Schrédinger equation but also from the boundary condition that the wave function
must vanish at the ends of the box. Unlike the quantization by hypothesis of the old
quantum theory, quantization has arisen from the mathematical analysis of the
eigenvalue equation.

The energy in Eq. (14.5-11) is kinetic energy, since we set the potential energy inside
the box equal to zero. Since we do not allow n = 0, the minimum possible kinetic
energy is positive and is called the zero-point energy. It is not possible for the particle
in a box to have zero kinetic energy. This result is very different from classical
mechanics, which allows a particle to be at rest with zero kinetic energy.

EXAMPLE 14.6

Find the energy of an electron in a box of length 1.000 nm for 7 = 1.

Solution

A (6.6261 x 1073 J5)*(1)?
" (8)(14.109 x 10731 kg)(1.000 x 10-9 m)?

=6.025 % 107207

*Exercise 14.20

How does the energy for a given value of n change if the length of the box is doubled? How does
it change if the mass of the particle is doubled?
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The Schrodinger Equation and De Broglie Waves

The particle in a box model provides the clearest illustration of the fact that the
Schrédinger equation is the wave equation for de Broglie waves. In the case of zero
potential energy, the total energy is equal to the kinetic energy so that

1 o _ P
== =— 5-12
E g =5 (14.5-12)
where we use the definition of the momentum, p = mv. From Eq. (14.4-3) and Eq.
(14.5-12),
h
A=—-= ! (14.5-13)
p 2mE
which is the same as
hZ
E = 14.5-14
2mA* ( )

The energy of a de Broglie wave is inversely proportional to the square of its
wavelength. When the relationship between the wavelength and the length of the box
is used, this becomes the same as the energy expression in Eq. (14.5-11).

Exercise 14.21

a. Show that the value of the wavelength corresponding to , is equal to 2a/n.

b. Show that the same formula for the energy as in Eq. (14.5-11) is obtained by substituting the
result of part (a) into Eq. (14.5-14).

As the value of n increases, the energy increases, the wavelength decreases, and the
number of nodes increases. It is an important general fact that a wave function with
more nodes corresponds to a higher energy.

If the potential energy inside the box is assigned a nonzero constant value ¥, instead
of zero, the energy eigenfunction is unchanged and the energy eigenvalue is increased
by the value of ¥,

Exercise 14.22

a. Carry out the solution of the time-independent Schrédinger equation for the particle in a one-
dimensional box with constant potential ¥ in the box. Show that the energy eigenvalue is

. kRt
B=N0t g
but that the wave function is unchanged.
b. The result of part (a) is generally true. That is, adding a constant to the potential energy adds
the same constant to the energy eigenvalues. Write the time-independent Schrisdinger equation
for a general system of n particles, Eq. (14.4-26), and show that this statement is correct.

If a particle in a box is electrically charged, it can absorb or emit photons. The energy
of a photon that is emitted or absorbed is equal to the difference in energy of the initial
and final states of the particle.
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*Exercise 14.23
Calculate the wavelength and frequency of the photon emitted if an electron in a one-dimensional
box of length 10.0A (1.00 x 10~ m) makes a transition from n =3 to n = 2 and the energy
difference is entirely converted into the energy of the photon.

Equation (14.4-22) can be used to obtain the time-dependent wave function for a
particle in a one-dimensional box:

‘1’,,(x, t) = Csin(ﬁ)efiﬁﬁt/ﬁ
a
B Csm(?)(cos(_”gn’/ﬁ) +isin(—iE,t/f))  (14.5-15)

It is generally possible to choose a real energy eigenfunction for a particle confined in a
finite region, but the time-dependent wave function is always complex. We will usually
refer to the energy eigenfunction as the coordinate wave function and the time-
dependent wave function as the complete wave function. At times when we do not
need to discuss the complete wave function we will simply call the energy eigenfunc-
tion “the wave function.”

Exercise 14.24
*a. Calculate the frequency of the de Broglie wave for the n = 2 and n = 3 states of an electron
in a box of length 1.000 nm.
b. Calculate the difference between these frequencies.
c. Compare these frequencies and their difference with the photon frequency in Exercise 14.23.
Do you think there is any simple relationship between these frequencies?

Specification of the State of a Particle in a Box

Instead of specifying the position and velocity of the particle, the state of the quantum-
mechanical particle is specified by saying which wave function and energy eigenvalue
correspond to the state of the particle. We recognize two cases:

1. The wave function of the system is known to be an energy eigenfunction times
the appropriate time-dependent factor as in Eq. (14.5-15). Chemists are usually
interested in this case. When a photon is absorbed or emitted by a molecule, the
initial and final molecule states correspond to energy eigenfunctions.

2. The wave function is some function other than an energy eigenfunction times the
appropriate time-dependent factor. Such a function must obey the time-dependent
Schridinger equation and the same boundary conditions as the energy eigenfunc-
tions. It can be represented by a linear combination analogous to that of Eq.
(14.2-23):

¥(x, 1) = f AW, (x)e ™ Entlh (14.5-16)
n=1

where 4, 4,, ... are a set of time-independent constants. As in the classical case,
this equation expresses the principle of superposition.
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Figure 14.20. A Particle in a Hard
Three-Dimensional Box. This system
contains a single particle that moves
freely so long as it remains in the box.

Exercise 14.25

Show that the function of Eq. (14.5-16) satisfies the time-dependent Schrédinger equation for the
particle in a one-dimensional box.

The Particle in a Three-Dimensional Box

We now consider a model system consisting of a single point-mass particle confined
in a three-dimensional rectangular box, which is placed so that its lower left rear corner
is at the origin of coordinates and its walls are perpendicular to the coordinate axes, as
depicted in Figure 14.20. Denote the length of the box in the x direction by a, the
length in the y direction by b, and the length in the z direction by ¢. We will use
this model system to represent the motion of an electron or of a gas molecule in a
container.

The solution of the Schrédinger equation is carried out in Appendix F. The energy
eigenfunction (coordinate wave function) is a product of three wave functions for
particles in one-dimensional boxes

Wy nn (%2, 2) = Csin (n";tx) sin (%I—V) sin (n__nz) (14.5-17)

c

where C is a constant. The energy eigenvalue is the sum of three energy eigenvalues for
particles in one-dimensional boxes:

B m o n
n,nyn,:'%(g'i“ﬁ‘l'?) (14.5-18)

There are three quantum numbers n,, n,, and n., which we will sometimes denote by the
three values in parentheses, as for example (1,1,2), etc. A particular energy eigenfunc-
tion and its energy eigenvalue are specified by giving the values of the three quantum
numbers.

If @ = b = ¢ (a cubical box) the energy eigenvalue is

]1'2
—(n; +n} +n?) (14.5-19)

n.n,n, = 8ma2

There can be several states that correspond to the same energy eigenvalue in this case.
The two sets of quantum numbers (1,2,3) and (3,2,1) both correspond to the same
energy although they correspond to different states. A set of states with equal energies
is called an energy level, and the number of states making up the energy level is called
the degeneracy of the energy level.

EXAMPLE 14.7

For an electron in a cubical box of side 1.00 x 10~° m, find the energy and the degeneracy
of the level in which the state corresponding to (1,2,3) occurs,
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Solution
The energy eigenvalue is
AT e (14)(6.6261 x 10734 J 5)?
7 8ma? ~ (8)(14.109 x 10-3 kg)(1.00 x 109 m)?
=843 % 107171

There are six permutations of the three distinct numbers: (1,2,3), (2:3:195311:2),-(3,2,1),
(1,3,2) and (2,1,3). There are no other sets of three integers whose squares add up to 14, so
the degeneracy is 6.

*Exercise 14.26

For an electron in the cubical box of Example 14.7 find the energy eigenvalues and degeneracies
of all energy levels of lower energy than that in Example 14.7.

The Free Particle in One Dimension

The free particle is an object on which no forces act. The potential energy of the particle
is equal to a constant, which we set equal to zero. If a point-mass particle can move only
parallel to the x axis, the time-independent Schrédinger equation is
#2 d%y

—i T 14.5-20
Equation (14.5-20) is the same as Eq. (14.5-4) for the motion of a particle in a box, but
the boundary conditions are different. The general solution to Eq. (14.5-20) is the same
as that in Eq. (14.5-6). We write this solution (the energy eigenfunction) in a different
way:

W(x) = D™ + Fe™ (14.5-21)
where the constant x is given by Eq. (14.5-5).

*Exercise 14.27
Use the identity

€% = cos(x) + i sin(x) (14.5-22)

to find the relations between the constants B, C, D and F that cause Eq. (14.5-6) and Eq.
(14.5-21) to represent the same function.

There are now no walls at which the wave function must vanish. We must still
conform our solution to the assumptions that the wave function be continuous and
finite. The finiteness condition requires that x be real. We let

K=a+ib
where @ and b are real. The solution is now
d](x) = Demxe*b.\' 4 Fe——m,reb.\' (14.5_23)

If b is positive, the second term grows without bound for large positive values of x. If b
is negative the first term grows without bound if x becomes large and negative. To keep
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the wave function finite, 5 must vanish and x must be real. The energy eigenvalues are
given by Eq. (14.5-5):
ﬁsz

=— 14.5-24
2m ( )

There is no restriction on the values of the parameter x except that it must be real, so £
can take on any real nonnegative value. The energy is not quantized and there is no
Zero-point energy.

If F vanishes, the complete wave function is

W(x, t) = De it — pellkx-Et/h) (14.5-25)

where £ is given by Eq. (14.5-24). Separating the real and imaginary parts, we obtain

E X —
W(x, f) =D|:cos(xx—§) +isin(ﬁf~.ﬁ—g)} (14.5-26)

Comparison of this with Eq. (14.2-24) shows both the real and imaginary parts to be
traveling waves moving to the right with a speed given by

_ﬁh’
C—Zm

(14.5-27)

A nonzero value of the constant F' corresponds to a traveling wave moving to the left.

Exercise 14.28
Show that Eq. (14.5-27) is correct.

*Exercise 14.29
Show that the function

W(x, 1) = Fe Wit/ (14.5-28)

represents a traveling wave moving to the left, and find its speed.

If D and F are equal, the two traveling waves can produce a standing wave:

Y(x) = D(e™ + e™™) = 2D cos(kx) (14.5-29)

Exercise 14.30
Use Eq. (14.5-22) to verify Eq. (14.5-29).

The complete wave function corresponding to Eq. (14.5-29) is

W(x, t) = 2D cos(kx)e /% (14.5-30)

Exercise 14.31

Show that if D = —F, a different standing wave results. How does it compare with that of Eq.
(14.5-30)?
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If the constants D and F are both nonzero but have unequal magnitudes, the complete
wave function becomes

lP(X, !) - Del'{x.:*—:"fr/ﬁ) 4 Fe~l'(h’.\'+£'r/fr) (145_31)

which represents a combination of traveling waves with different amplitudes, one
moving to the right and one moving to the left. This behavior is rather different from
that found in classical mechanics, in which one state always corresponds to only one
kind of behavior. The idea that a single particle can have a single state corresponding to
motion in two different directions at the same time seems impossible, but it is allowed
in quantum mechanics. A possible interpretation is that since some predictions of
quantum mechanics are statistical in nature, a wave function should be thought of as
representing the behavior of a large collection (an ensemble) of objects, all in the same
state but capable of different outcomes of a particular measurement. We will return to
this question in the next chapter.

The Free Particle in Three Dimensions

From the Hamiltonian operator in Eq. (14.4-24), the time-independent Schrodinger
equation for a free particle moving in three dimensions is

Py Py Y\ 2mE _
(a?+®_2+@) = -2y (14.5:32)

This is the same as for a particle inside a three-dimensional box, and it can be solved in
the same way by separation of variables. For the special case of a traveling wave moving

in a definite direction with a definite energy (definite values of Ky, K, and k_) the energy
eigenfunction is

l//(x,y, Z) w Deix‘_,\-em_,.yeix_.: (1445_33)
where
2mE, 2mE, 2mE. "
Kf. = ﬁ2. ; ch = 72 £ rc_? — e 2 (14.5-34)

The vector k with components K., K,, and k. points in the direction in which the
traveling wave moves and is called the wave vector. The three components of the wave
vector can take on any real values,

The energy eigenvalue is given by

2

72 7
E=E +E+E =—(2+1+K}) =25 (14.5-35)
: 2m : 2m

\
5]

The energy is not quantized and there is no zero-point energy. Just as Eq. (14.5-31)
represents a linear combination of waves moving in opposite directions, an energy
eigenfunction for a three-dimensional free particle can consist of a linear combination
of waves moving in various directions as long as the wave vectors have the same
magnitude.
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14.6

Charles Hermite, 1822-1901, was a
great French mathematician who
made many contributions to
mathematics, including the proof that
e(2.71828...) is a transcendental
irrational number.

The Harmonic Oscillator

The time-independent Schrdinger equation of the harmonic oscillator is

2 2
&w——?%q- Ky = Ey (14.6-1)

where we continue to use the letter z for the coordinate as in Section 14.1. We define the
constants

3 PR P £ (14.6-2)

so that the Schrédinger equation can be written
2
—g+b-d2Y =0 (14.6-3)

This differential equation is of the form of a well-known equation known as the Hermite
equation (see Appendix F). The solutions to the Hermite equation are of the form

W(z) = e /28(2) (14.6-4)
where S(z) is a power series
oo
S@=co+ecz+e2 +e22 o= 3 ¢, (14.6-5)
n=0
with constant coefficients ¢y, ¢y, ¢3, ... Hermite showed that the series must terminate

in order to keep i from becoming infinite as |z| becomes large. The series S becomes
one of a set of polynomials known as Hermite polynomials. Appendix F contains
some information about the solution. As is shown in Appendix F, the termination of the
polynomials determines the energy eigenvalues, which are given by

E= 4 kv+1 vd:)-l (14.6-6)
2 2 2 '
where v is the frequency of the oscillator predicted by classical mechanics, (see Eq.

(14.1-10)) and where v =0, 1,2,3, .... The energy is quantized and there is a zero-
point energy:

Eq=1hv (zero-point energy) (14.6-7)
With the particle in a box the quantization was produced by the condition that the wave
function must be continuous. With the harmonic oscillator system, the energy
quantization is produced by the condition that the wave function must be finite.

Exercise 14.32
*a. Find a formula for the frequency of a photon with energy equal to the difference in energy
between the v = 0 state and the v = 1 state.
b. How does this frequency compare with the classical frequency of the oscillator? How do you
interpret this comparison?
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Energy/hv
or wave function (arbitrary units)

93 -2 -1 0 1 2 3

Figure 14.21. Harmonic Oscillator
Wave Functions. This diagram shows
the first four energy eigenfunctions for
the harmonic oscillator, superimposed
on a diagram of the energy eigenvalues.

For v = 0, the energy eigenfunction of the harmonic oscillator is

5 1/4
Vo = S0e™ 7 = e = (2) a2 (14.6-8)

where the choice for the value of ¢, will be discussed later. For v = 1, the energy
eigenfunction is

4\
¥, = (i) e~ (14.6-9)

T

and for v = 2, the wave function is

1/4

Uy = (i) (202 — 1)e=12 (14.6-10)
4n

The factor (2az* — 1) is proportional to the Hermite polynomial H,(,/az). Other energy

eigenfunctions can be generated from formulas for the Hermite polynomials in

Appendix F

Exercise 14.33
Obtain a formula for v, for the harmonic oscillator. Do not evaluate the constant -

Figure 14.21 shows the energy eigenfunctions for v =0, v =1, v =2, and v = 3.
Each wave function is plotted on a separate axis at a height representing the energy
eigenvalue. The potential energy as a function of z is also plotted with the same energy
scale. The classical turning point for any given energy is the point at which the potential
energy is equal to the total energy, and the wave function is nonzero in the regions past
the turning points. A comparison of these graphs with those for the particle in a one-
dimensional box in Figure 14.19b shows that the general pattern of the nodes is the
same, with more nodes corresponding to higher energy. In addition to the nodes at
infinite |z| for the harmonic oscillator and at the ends of the box for the particle in a box,
the lowest-energy wave function has no nodes, the next-lowest-energy wave function
has one node, and so on.

We can now compare the classical and quantum-mechanical solutions for the
harmonic oscillator. The classical solution gives the position and velocity of the
oscillator as a function of time, as shown in Figure 14.2, and the state of the oscillator
at any instant is specified by giving the value of the position and the velocity. The
quantum-mechanical state is specified by stating which wave function corresponds to
the state of the system. The wave function describes a de Broglie wave and, if the wave
function corresponds to a standing wave, the de Broglie wave oscillates with a certain
frequency but does not move. The de Broglie wave oscillates over all values of the
coordinate, including values beyond the classical turning points. As we will show in the
next chapter, this behavior corresponds to possible penetration of the particle into a
classically forbidden region, which is called tunneling.

EXAMPLE 14.8

Calculate the frequency of oscillation of the wave function corresponding to the v = 0 state
of the oscillating hydrogen atom of Example 14.2.
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Solution
From Eq. (14.4-21) the time-dependent factor of the wave function is
C('-') 2 eﬂ'Ear/ﬁ i e*ihvr,"lﬁ B eﬁm‘w‘
Inspection of this equation shows that the frequency is v/2, where v is the classical
frequency of the oscillator, or 4.35 x 10 s~!, It is interesting that this frequency is not the

same as that of the classical oscillator, and is also not the same as that of the other wave
functions.

*Exercise 14.34
a. Find a formula for the frequency of oscillation of the harmonic oscillator wave function for the

v =1 state.
b. Find a formula for the frequency of oscillation of the harmonic oscillator wave function for the
v = 2 state.

¢. Compare the frequencies from parts (a) and (b) and the frequency from Example 14.8 with the
frequency of the photon in Exercise 14.32 and with the frequency of oscillation of the classical
oscillator.

d. Compare the difference between the frequencies of the v = 2 state and the v = | state with the
frequency of the photon.

EXAMPLE 14.9

Find the classical amplitude of oscillation for a hydrogen atom attached to a chemical bond
as in Example 14.2 if the energy is equal to that of the v = 0 quantum state.

Solution
For a classical energy equal to the » = 0 quantum energy, the turning point is given by

R P 6.6261 x 107347
""k 2nVhm o /(500Nm-T)(1.674 x 10-2"kg)
=1.15x 107 m?

z=107x10"m=0107A

*Exercise 14.35

Find the classical amplitude of oscillation of a hydrogen molecule with an energy equal to that of
the v = 0 quantum state. Express it as a percentage of the bond length, 0.74 x 107" m. The
molecule vibrates like a harmonic oscillator with a mass equal to the reduced mass of the two
nuclei (see Eq. (D-30) of Appendix D). The force constant is equal to 576 Nm™', and the reduced
mass is equal to 8.369 x 107** kg (half the mass of a hydrogen atom).

Summary of the Chapter

The solution of the classical equation of motion for the harmonic oscillator provides
formulas for the position and velocity of the mass as functions of time. The solution of
the classical equation of motion for a flexible string prescribes the position and velocity
of each point of the string as a function of time.
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PROBLEMS

The “old quantum theory” consists of theories with arbitrary assumptions of
quantization, devised to explain phenomena that classical physics could not explain.
This theory consists primarily of the black-body radiation theory of Planck, the
photoelectric effect theory of Einstein, and the hydrogen atom theory of Bohr.

De Broglie sought a physical justification for Bohr’s assumption of quantization, and
hypothesized that all particles move with a wavelike character with a wavelength given
by

A h
L
muv
where £ is Planck’s constant, m is the mass of the particle, and v is its speed. According
to the concept of wave-particle duality, electrons and other objects have some of the
properties of classical waves and. some of the properties of classical particles.
Schrddinger discovered a wave equation for these matter waves. The time-independent
equation is an eigenvalue equation given by

Hy = Ey

where E is the energy of the systemi, ¥ is a wave function, and # is the Hamiltonian
operator. The time-dependent Schrédinger equation is

- v

H!f/ = ih ?
By assuming that the wave function ¥ is a product of a coordinate factor i and a time
factor {, the coordinate factor is found to obey the time-independent Schrédinger
equation.

The solutions to the time-independent Schrédinger equation for three example
systems were presented: the particle in a hard box (in one dimension and in three
dimensions), the free particle, and the harmonic oscillator. Sets of energy eigenfunc-
tions and energy eigenvalues were obtained, and in the cases of the particle in a box and
the harmonic oscillator, we found a discrete spectrum of energies, corresponding to
energy quantization. Two new phenomena occurred. First, the particle in a box and
harmonic oscillator exhibited a zero-point energy. Second, the harmonic oscillator has a
nonzero wave function in regions where classical mechanics predicts that the particle
cannot enter.

Problems for Section 14.1

14.36. The vibrational frequency of a '2C'®0 molecule is
6.5405 x 10°s~!.  The atomic masses are: !2C,
12.00000 amu; 60, 15.994915 amu.

a. Find the value of the force constant. _
b. Find the vibrational frequency of a '*C'°0 molecule.
¢. Find the vibrational frequency of a '2C!"0Q molecule.

*14.37. Assume that a '2C'®0 is adsorbed on a platinum
surface in such a way that the carbon atom is held stationary.
Find the vibrational frequency of the vibrating oxygen atom.
See the previous problem for data.

14.38. The frequency of vibration of a 'H*Cl molecule is
8.966 x 10" s~!. What would the frequency be if the chlor-
ine atom were infinitely massive?

Problems for Section 14.2

14.39. a. If a violin string has a fundamental frequency of
26457, find the frequency of each of the first three overtones.

b. If the speed of sound is 338 ms~!, find the wavelength
of the sound wave with frequency 264 s,

14.40. a. In a closed organ pipe, the wavelength of the
fundamental corresponds to twice the length of the pipe.



